Estimation in Random Coefficient Autoregressive Models
نویسندگان
چکیده
We propose the quasi-maximum likelihood method to estimate the parameters of an RCA(1) process, i.e. a random coefficient autoregressive time series of order 1. The strong consistency and the asymptotic normality of the estimators are derived under optimal conditions.
منابع مشابه
Minimum distance estimation for random coefficient autoregressive models
In this paper, we extend the minimum distance method of Beran (1993) to random coefficient autoregressive (RCA) models. After stating the necessary assumptions the asymptotic properties of the minimum distance estimator are derived. A M S classification: 62M05
متن کاملShrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors
In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both l...
متن کاملEstimation in nonstationary random coefficient autoregressive models
We investigate the estimation of parameters in the random coefficient autoregressive model Xk = (φ+ bk)Xk−1 + ek, where (φ,ω 2, σ2) is the parameter of the process, Eb0 = ω2, Ee0 = σ 2. We consider a nonstationary RCA process satisfying E log |φ + b0| ≥ 0 and show that σ2 cannot be estimated by the quasi-maximum likelihood method. The asymptotic normality of the quasi-maximum likelihood estimat...
متن کاملUnified Interval Estimation for Random Coefficient Autoregressive Models
The consistency of the quasi maximum likelihood estimator for random coefficient autoregressive models requires that the coefficient be a non-degenerate random variable. In this paper we propose empirical likelihood methods based on weighted score equations to construct a confidence interval for the coefficient. We do not need to distinguish whether the coefficient is random or deterministic an...
متن کاملQuasi-likelihood Estimation in Stationary and Nonstationary Autoregressive Models with Random Coefficients
We propose a unified quasi-likelihood procedure for the estimation of the unknown parameters of a first-order random coefficient autoregressive, RCA, model that works both for stationary and nonstationary processes. For this procedure, the weak consistency and the asymptotic normality are established under minimal assumptions on the noise sequences. In an empirical study, we highlight the pract...
متن کامل